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An Investigation of Striplines and Fin Lines
with Periodic Stubs
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Abstract —1In this paper, a technique based on the network-analytical
formalism of electromagnetic fields is used to analyze the strip and fin lines
with periodic stubs. Numerical results for the dispersion characteristics of
the periodically loaded lines are presented. The effect of the loading stubs
on the passband and stopband characteristics is investigated.

I. INTRODUCTION

ROPAGATION characteristics of planar transmission
lines for microwave and millimeter-wave integrated
circuits have been investigated in the past by many authors.
Two of the frequently used transmission media in the
microwave frequency range are the strip- and slotlines,
while the fin line is known to find applications in the
millimeter-wave range. Hybrid- mode. analyses of uniform
lines of the above types have been reported in the literature
[1]-[3]. The periodic-loaded version of these lines finds
useful applications in many devices, such as filters [4], [5].
In this paper, an approach for analyzing periodically
loaded striplines and fin lines is presented. The network-
analytical method is employed to formulate an integral
equation for the unknown electromagnetic fields [3] and
Galerkin’s procedure is used to derive a numerical solution
of this equation. The discontinuous-type basis functions,
which are similar to those employed in certain ppen-region
scattering problems [6], [7] are used to represent the discon-
tinuity in the aperture figld, or the current, at a junction.
Numerical results present the passband and stopband
properties.

II. THE NETWORK FORMULATION OF THE PROBLEM

In this section, we illustrate the network-analytical
method of formulation by analyzing the problem of fin
lines with periodic stubs (see Fig. 1(a)), although the method
itself is applicable to the stripline configuration (Fig. (1(b)).
The numerical results for both cases will be presented in
the next section.

As a first step, we express the transverse (to z) fields in
each region by using the Fourier transformation in the
x-direction and Floquet harmonic representation in the
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y-direction as follows:
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Here 8, is the propagation constant of the dominant
harmonic in the Floquet representation, and the vector
mode functions e, #,,,, satisfy the boundary conditions
at x=+ A as well as the following orthonormal proper-
ties:
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where 8, is Kronecker’s delta and the symbol * signifies
complex conjugate. Substituting (1) into Maxwell’s field
equations and applying the orthonormal properties (3), we
obtain the differential equations for ¥, and I
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Planar transmission lines with stubs (a) periodic-loaded fin line,
(b) periodic-loaded stripline,

Fig. 1.

The boundary conditions to be satisfied are expressed as
follows:

Vign(d) =0
Vi (+0) =V (<0) = 0,

(6)
(7)

Vion(—dy +0)=V3.(— d, —0) (8a)
2) ( d +0) Il(r::z)n( dz _0) (8b)
(3) ( d, - d3) 0 (9)

and

Hta)('x’ ¥, +O) = HI(Z)(xa Y, _0)
(in the aperture of z=0) (10)
where

A P/2 /’ ! ’ ’ ’ s
v/mn=f f elq;nn(x s Y )'E(x » Y )dx dy (11)
)

and e(x, y) is the transverse electric field in the aperture at
z=0.
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Solution of the differential equations (4) and imposition
of the boundary conditions (6)-(9) yield the unknowns
V9 and If) in each region. The electromagnetic fields, in
turn, can be "obtained by substituting ¥,{), and If?) into
(1). Finally, applying the remaining boundary conditions
(10), we may obtain the integral equation for the aperture
field e(x, y), and implicitly for the unknown propagation
constant B

A P/2 .,
%%f_ﬁf.. P/z{Ylmnhlmn(x7 y)eikmn(x >y )

+ Y2mnh2mn('x’ y)e;mn(x,’ yl)}
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where (x, y) lies in the aperture at z =0 and

(12)

1
Y, = 0€{ — cot( @ dl)
P
mn
L& k@ — e,6® tan (k@,d, ) tan (k2),d;) }
2 2 2 3 3
Ko K"tan( dy) + e tan (k) dy)
Y, = ——{ k® cot (xO.d,)
mn w”o mn mn

1

2
2,

1 1
ﬁ tan(x(z)d2)+ ﬁ tan( Q) d3)

mn mn

e ("frﬂdZ)tan(ngzd.’;)
Kmn

+x2

(13)

The formulation is rigorous up to this stage. The numeri-
cal computation for the above equation is explained in the
next section.

III.
Equation (12) can be expressed in an operator form as

NUMERICAL COMPUTATION AND RESULTS

Fx, ylx’, y)-e(x, y") =0 (14)
where the dyadic operator F- is given by
F(x, yix', y')
P/2
—ZZ/ f lmn 1mn('x y)elmn(x y )
+Y2mnh2mn(x’ y)eZmn(x,’ yl)} dX’dy’. (15)

The determinantal equation for the dispersion relation
can be obtained by applying Galerkin’s. procedure to (14).
In this procedure, the unknown aperture field e(x, y) is
cxpanded in terms of the appropriate basis functions
fi(x, y) as follows:

N

e(x,y)= E a,fi(x, y) (16)
k=1

where a, are the unknown coefficients. Substituting (16)
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into (14), using f,*(x, y) as test functions and taking inner
products, we obtain a set of simultaneous equations for the
unknown coefficients a,:

[M][a]=0. (17a)
That is
_Mn M, M1N1 .
M21 al
2
S =0 (17b)
: ay
_MNl MNNJ
where

A (P2
M= [ [ Zyx fx(x,y)
-AY~P/2

A F(x, yix', ) -f(x', y) } dxdy. (18)

The determinantal equation for the propagation constant
B, can be obtained by setting the determinant of the
coefficient matrix of (17) equal to zero, i.e.,

det[ M(B,)] =0. (19)

It remains only to select the basis functions f.(x, y).
Before defining the basis functions, we introduce three
auxiliary functions:

1 (lx]sWandW1<|y|<§)

o Ny

|x| < Wand |y| <
seen-{1 | |
0 (otherwise)

S,(x,y)= {

0 (otherwise)

1 (W<|x|<W+1land |y|<W,)
S3(x, )= .

(%) {0 (otherwise).

(20)

The regions represented by these functions are shown in
Fig. 2. The basis functions to be used are defined by
employing these auxiliary functions:

filx, y)= xox(x)e;moy&(x, )
fz(x, )/) = xOX(x)e‘jﬁ—lySI(xs y)
f(x, y) = xosgn(y) X(x)e s, (x, y)

+ yosen () cos (37 x| F(0)Ss(x, )

(21a)
(21b)

(21¢)
fa(x, ) = xo58n () X(x) e -5, (x, y)
+psen(x)cos{ 5 x| V()8 (x, )

(21d)
where

ﬁ~1=ﬁ'o_gpz

fow,

Fig. 2. Regions represented by (20).

and X(x) and Y(y) represent the x- and y-variations in
the main- and stub-fin lines, respectively. Three different
functions were tested for X(x) and Y{(y), viz.,

C

(i) X(x)zl/_V Y(y)=7V—1, C: constant

}
(22)

We mention that the functions in (21¢) and (21d) are quite
similar in character to the junction basis functions that
have been employed in scattering problems [6], [7], together
with X(x) and Y(y) given by (i) in (22) and have been
found to yield good results for these open-region problems.
However, for the transmission-line calculations, where the
near-field is important, computations have been carried out
[8], [9] using the basis functions given in (ii) and (iii) in
(22).

Fig. 3 shows the k — B, diagram for a fin line with
periodic stubs. Computations were performed for three
different sets of basis functions given in (22), but the
differences were found to be rather small. However, the
basis functions given in (iii) have been employed for the
computations in this paper because of superior conver-
gence properties without undue increase in computation
time. The curve for the periodically loaded fin line (solid
line) is lower than for the uniform fin line without stubs
(broken line) because of the inductive reactance of the
series stubs. The passband and stopband regions, which are
common in the dispersion diagrams in periodic structures
[10] and are applicable to filters, are clearly evident in Fig,
3. The first passband occurs in the frequency range when
kp satisfies 1.038 < kp < 2.800 and the first stopband 2.800
< kp <2.931. It should be noted that the higher order
stopbands will appear in the higher frequency range; how-
ever, since the higher order (even) mode of the uniform fin
line (without stubs) can propagate in the range kp > 4.315,
these higher stopbands have little significance.

-l
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Fig. 3. The k-, diagram for a periodic-loaded fin line. ¢, =2.2,
dy=0.094 in, d,=0.005 in, d;=0.089 in, W=0.0025 in, 4=0.047
in, ;=001 in, /=004 in, p=012 in, ~—~—~~ uniform fin line.
Fin line with stubs using X(x) and Y(y) given in: ° o (i) in (22), X X
(if) in (22), — — — (i) in (22).
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Points indicated in Fig.3

Fig. 4. The relative amplitude of coefficients of basis functions f; and
fa-

Fig. 4 shows the relative amplitude of the coefficients of
basis functions f; and f,, which represent the n =0 and
n = —1 harmonics, respectively, at each point indicated in
Fig. 3. These results show that the first stopband is caused
by the coupling between the n = 0 and » = —1 harmonics.

Fig. 5 shows the effect of the loading stubs on the
normalized stopband width Ak /k_, where Ak is the stop-
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Fig. 5. The effect of the Joading stubs of the fin line. €, = 2.2, d, = 0.094
in, dy = 0.005 in, d; = 0.089 in, W = 0.0025 in, 4 = 0.047 in, p =0.12 in.
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Fig. 6. The k - g, diagram for a periodic-loaded stripline. ¢, = 8.875,
dy=11.43 (mm), d, =127 (mm), W =0.3175 (mm), 4=6.35 (mm),
W, =0.3175 (mm), / =4 (mm), p =10 (mm).

" band width and k, is the center frequency. The stub length

! is smaller than the quarter wavelength of the stub fin line,
so the series stubs have an inductive reactance; therefore,
the longer the stub, the wider the stopband. The character-
istic impedance of the fin line becomes larger as the gap
becomes wider [2]; therefore, the stopband becomes wider
with wider stubs, although the dependence on the stub
width is relatively small.

Fig. 6 shows the k — f, diagram of the stripline with
periodic stubs. Again, the passband and stopband proper-
ties are observed in this case, with the first passband
occurring whern 0 < kp <1.228 and the first stopband when
1.228 < kp <1.286. The first higher order mode of the main
stripline appears when kp = 2.289; therefore, the higher
order stopbands have no meaning in the same way as the
case of fin line. ’

Fig. 7 shows the effect of the loading stubs. The char-
acteristic impedance of the stripline becomes smaller as the
strip becomes wider [3], but the stubs are shunt-connected
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Fig. 7. The effect of the loading stubs of the stripline. ¢, = 8.875,
dy,=11.43 (mm), d,=127 (mm), W=03175 (mm), 4=635 (mm),
p =10 (mm).

in this case. Therefore, the stopband, again, becomes wider
with wider stubs.

IV. CoNCLUSIONS

A method of analysis for the stripline and the fin line
with periodic stubs has been presented, and the k —§,
diagrams for these structures have been computed. It is
found that the passband and stopband properties are gen-
erated from the coupling between the n=0 and n=—1
harmonics. The effects of the loading stubs have been
determined numerically.
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