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An Investigation of Striplines and Fin Lines
with Periodic Stubs

TOSHIHIDE KITAZAWA AND RAJ MITTRA, FELLOW, IEEE

,4Mract —In this paper, a technique based on the network-analytical

formalism of electromagnetic fields is used to analyze the strip and fin lines
with periodic stnbs. Numencaf results for the dispersion characteristics of
the periodically loaded lines are presented. The effect of the loading stubs
on the passbaqd and stopbarrd characteristics is investigated.

I. INTRODUCTION

P ROPAGATION characteristics of planar transmission

lines for microwave and millimeter-wave integrated

circuits have been investigated in the past by many authors.

Two of the frequently used transmission media in the

microwave frequency range are the strip- and slotlines,

while the fin line is known to find applications in the

millimeter-wave range. Hybrid-mode. analyses of uniform

lines of the above types have been reported in the literature

[1]-[3]. The periodic-loaded version of these lines finds

useful applications in many devices, such as filters [4], [5].

In this paper, an approach for analyzing periodically

loaded striplines and fin lines @ presented. The network-

analytical method is employed to formulate an integral

equation for the unknown electromagnetic fields [3] and

Galerkirt’s procedure is used to derive a numerical solution

of this equation. The discontinuous-type basis functions,

which are similar to those employed in certain open-region

scattering problems [6], [7] are used to represent the discon-

tinuity in the aperture fi@d, or the current, at a junction.

Numerical results present the passband and stopband

properties.

II. THE NETWORK FORMULATION OF THE PROBLEM

In this section, we illustrate the network-analytical

method of formulation by analyzing the problem of fin

lines with periodic stubs (see Fig. l(a)), although the method

itself is applicable to the stripline configuration (Fig. (l(b)).

The numerical results for both cases will be presented in

the next section.

As a first step, we express the transverse (to z) fields in

each region by using the Fourier transformation in the

x-direction and Floqpet harmonic representation in the

Manuscript received September 15, 1983; revised Fe~ruary 21, 1984.
This work was partially supported by DAAG29-82-K-O084 and by the
Joint Services Electronics Program under Contract JSEP NOOO-1479C-
0424.

T. Kitazawa is with the Electromagnetic Laboratory, University of
Illinois, Urbana, IL 61801-2991, on leave of absence from the Kitami
Institute of Technology, Kitami Japan.

R. Mittra 1s with the Electromagnetic Laboratory, University of 11-
linois. Urbana, IL 61801-2991.

y-direction as follows:
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Neumann’s number. (2)

Here /30 is the propagation constant of the dominant

harmonic in the Floquet representation, and the vector

mode functions el~., h ~~fi satisfy the boundary conditions

at x = + A as well as the following orthonormal proper-

ties:

A

H

P/2

elmn(x, Y).eflmn(x, Y) dXdY = a,, f8mmr13nE,
–A –P/2

(3)

where 8,[, is Kronecker’s delta and the symbol * signifies

complex conjugate. Substituting (1) into Maxwell’s field

equations and applying the orthonormal properties (3), we

obtain the differential equations for V[~~ and 1}~~:

I
d~;~ _

“ (1) (z) ~(l)– — – J~.nzimn [m.
dz

dI/;)n
“ (~) (/) ~(r)– — = J~mnY[mn i.n

dz
(4)

where
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z Solution of the differential equations (4) and imposition
Region

(1) (j,

E*

<0
of the boundary conditions (6)–(9) yield the unknowns

lj~~ and 1}~)~ in each region. The electromagnetic fields, in
(2) d,

..X
G,co:–: –_. _– .._.

turn, can be obtained by substituting V~~ and lj~~ into
(31 d, % (l). Finally, applying the remaining boundary conditions

2A (10), we may obtain the integral equation for the aperture.
field 6(x, y), andl implicitly for the unknown propagation

constant Po:

x

I-J+

(a)

z z j-Q-~/2{Yhhnn(x> Y)wnn(x’,Y’)
mn

+ Y2.1n~2mfl(x, ~)e~mn(x’, Y’)}

‘6(X’, y’) dx’dy’= o (12)

where (x, y) lies in the aperture at z = O and

1<

\

L
1—. A tan (K~~d2) tan(K~~d3)

P
K (2) K (3)

+ .(2). ;“ ‘“
mn

2W, — tan(~(2)d2)+ * tan(K$l~3)
. (2)

mn inn 1

w (13)

(b)
The formulation is rigorous up to this stage. The numeri-

Fig. 1. Planar transmission lines with stubs (a) periodic-loaded fin line,
(b) periodic-loaded stnpline.

cal computation for the above equation is explained in the

next section,

The boundary conditions to be satisfied are expressed as III. NUMERICAL COMPUTATION AND RESULTS

follows: Equation (12) can be expressed in an operator form as

fi:)(dl)=O (6) i~(x, ylx’, y’). e(x’, y’) = o (14)

(2) (–o) = u~mn~:~(+o) = Vjmn (7) where the dyadic operator ~. is given by

(s)(–d2_O) (8a)
F(X, ylX’, j?’)”v$;(– d2 +0) = Vlmn

(3) (_d2–())Ij;\( – d2 +0) = I[nn (8b)
=x zJ:AJ:,2{LmnLn(% Y)%l(x’> Y’)

fi:)(-d2-d3)=0 (9)

and ~Y~~#z~n(x, y)e~~u(x’, y’)} dx’dy’. (15)

– o)
The determinantal equation for the dispersion relation

Hfl)(x, y,+o)=H;2)(x, y,
can be obtained by applying Galerkin’s procedure to (14).

(in the aperture of z = O) (10) In this procedure, the unknown aperture field C(X, y) is

where expanded in tm-ms of the appropriate basis functions

A

V,mn =
H

“2 f%.(X’, Y’)-t(X’, y’) dx’dy’ (II) “’(x”) as ‘O1lOws: ~
–A –P/2

c(x, y)= ~ akjk(x, y) (16)

and c(x, y) is the transverse electric field in the aperture at
k=l

2=0. where ak are the unknown coefficients. Substituting (16)
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into (14), using ~M*(x, y) as test functions and taking inner

products, we obtain a set of simultaneous equations for the

unknown coefficients a~:

That is

where

[M][a]=o.

full M12 ..0 &flN

M21

MN1 M NN

HMm~ = A “2 Z. Xf:(x, y)
–A –P/2

(17a)

F%%

I--J I-J

Fig. 2. Regions represented by (20).

‘{~(x,Ylx’d’)-f,(x’,y’))~x@.(18)

The deterrninantal equation for the propagation constant

& can be obtained by setting the determinant of the
coefficient matrix of (17) equal to zero, i.e.,

det [M(/30)] = O. (19)

lt remains only to select the basis functions ~k(x, y).

Before defining the basis functions, we introduce three

auxiliary functions:

((1Sl(x, y)=
1x1< Wand lyl < ~

)

o (otherwise)

S,(x, y)= ((1 lxl<Wand Wl<lyl<~
)

lo (otherwise)

(1 (W<lxl< W+landlyl<W1)
s3(x, y)= o

(otherwise).

(20)

The regions represented by these functions are shown in

Fig. 2. The basis functions to be used are defined by

employing these auxiliary functions:

~~(x9y) =xOX(x)e2JP0YSl(x, y) (21a)

~2(~j Y) =xOX(x)e-JP-’YS1 (x, y) (21b)

f3(x,Y)=xosgn(y)x(x)e-’poyS2(x,y)

( T
+ yOsgn(x)cos

2(1+W) )
x Y(y)s3(x

~4(x, Y)=xOsgn(y)X(x) e-Jp-’’&(x, y)

+ yOsgn(x)cos
{ 2(1:W) )

x Y(y)s3(x,

Y)

21C)

Y)

where

and X(x ) and Y(y) represent the x- and y-variations in

the main- and stub-fin lines, respectively, Three different

functions were tested for X(x) and Y(y), viz.,

(i) X(X)=$ y(y)=+, C: constant

(ii) X(.x) =# Y(y)=%

(iii) X(x)= *{l+l~13) Y(y)= *{l+lj$13).

(22)

We mention that the functions in (21c) and (21d) are quite

similar in character to the junction basis functions that

have been employed in scattering problems [6], [7], together

with X(.x ) and Y(y) given by (i) in (22) and have been

found to yield good results for these open-region problems.

However, for the transmission-line calculations, where the

near-field is important, computations have been carried out

[8], [9] using the basis functions given in (ii) and (iii) in

(22).

Fig. 3 shows the k – & diagram for a fin line with

periodic stubs. Computations were performed for three

different sets of basis functions given in (22), but the

differences were found to be rather small. However, the

basis functions given in (iii) have been employed for the

computations in this paper because of superior conver-

gence properties without undue increase in computation

time. The curve for the periodically loaded fin line (solid
line) is lower than for the uniform fin line without stubs

(broken line) because of the inductive reactance of the

series stubs. The passband and stopband regions, which are

common in the dispersion diagrams in periodic structures

[10] and are applicable to filters, are clearly evident in Fig.

3. The first passband occurs in the frequency range when

kp satisfies 1.038< kp <2.800 and the first stopband 2.800
< kp <2.931. It should be noted that the higher order

stopbands will appear in the higher frequency range; how-

ever, since the higher order (even) mode of the uniform fin

line (without stubs) can propagate in the range kp >4.315,

these higher stopbands have little significance.
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Fig. 3. The k – /30 diagram for a periodic-loaded fin line. c,= 2,2,
dl = 0.094 in, dz = 0.005 in, d~ = 0.089 in, W= 0.0025 in, A = 0.047
in, WI = 0.01 in, I = 0.04 in, p = 0.12 in, –––––– uniform fin line,
Fin line with stubs using X(x) and Y(y) given in: . . (i) in (22), X X

(ii) in (22), – –– (iii) in (22).
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Points indicated in Fig.3

Fig. 4. The relative amplitude of coefficients of basis functions ~1 and

fz.

Fig, 4 shows the relative amplitude of the coefficients of

basis functions ~1 and jz, which represent the n = O and

n = – 1 harmonics, respectively, at each point indicated in

Fig. 3. These results show that the first stopband is caused

by the coupling between the n = O and n = – 1 harmonics,

Fig. 5 shows the effect of the loading stubs on the

normalized stopband width Ak/kC, where Ak is the stop-

/
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Fig. 5, The effect of the loading stubs of the fin line. (,= 2.2, dl = 0.094
in, dz = 0.005 in, d~ = 0.089 in, W = 0.0025 in, A = 0.047 in, p = 0.12 in.
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Fig. 6. The k - /30 diagram for a periodic-loaded stripline. C, = 8.875,
dl = 11.43 (mm), dz = 1.27 (mm), W= 0.3175 (mm), A = 6.35 (mm),
WI= 0.3175 (mm), 1= 4 (mm), p =10 (mm).

band width ancl kC is the center frequency. The stub length

1 is smaller than the quarter wavelength of the stub fin line,

so the series stubs have an inductive reactance; therefore,

the longer the stub, the wider the stopband. The character-

istic impedance of the fin line becomes larger as the gap

becomes wider [2]; therefore, the stopband becomes wider

with wider stu~bs, although the dependence on the stub

width is relatively small.

Fig. 6 shows the k – & diagram of the stripline with

periodic stubs, Again, the passband and stopband proper-

ties are observed in this case, with the first passband

occurring wherl O < kp <1.228 and the first stopband when

1.228< kp <1.286. The first higher order mode of the main

stripline appears when kp = 2.289; therefore, the higher

order stopbands have no meaning in the same way as the

case of fin line,

Fig. 7 shows the effect of the loading stubs. The char-

acteristic impedance of the stripline becomes smaller as the

strip becomes wider [3], but the stubs are shunt-connected
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Fig. 7. The effect of the loading stubs of the strip line. (,= 8.875,
dl = 11.43 (mm), dz -1.27 (mm), W’= 0.3175 (mm), A = 6.35 (mm),

p =10 (mm).

in this case. Therefore, the stopband, again, becomes wider

with wider stubs.

IV. CONCLUSIONS

A method of analysis for the stripline and the fin line

with periodic stubs has been presented, and the k – /30

diagrams for these structures have been computed. It is

found that the passband and stopband properties are gen-

erated from the coupling between the n = O and n = – 1

harmonics. The effects of the loading stubs have been

determined numerically.
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